																									×	×	× × × ×	
A st	na er	al O	× y 1C	S1 1 i	s S n	× O ×	r F Va	a as	n st	al «	bo W	ol va	ic te	× C× ×	× a. ×	× 1 × × ×	× d × ×	× 1 × × ×	× S ×	× € ×	× <u>×</u> × ×	× 1×(×	× × × ×					
	Loi Joł	uise nan	× × K Li	arl nd	sso oer	'n, 'n,	° Řh ₽h	× D D ×																				

Wastewater-based epidemiology (WBE)

- Influent wastewater
- Measurements of excretion products
- Population-level
- Broad application potential
 - Drugs of abuse
 - COVID-19 pandemic

- Alternative to interviews or questionnaires
- Quantitative
- Objective and real-time data
- Low ethical risk
- High time- and cost-effectiveness

Wastewater-based epidemiology

- First suggested for monitoring illicit drug use in 2001
- Measurements can be used to estimate population normalised consumption/exposure
 - Wastewater flow
 - Population size
 - Excretion rate
- Effluent samples
 - Removal capacity
 - Detect environmental pollutants
- Few studies have used WBE to estimate AAS use
 - No studies consider endogenous production or prescribed consumption

Methods

Experience from analysis of drugs

- RISE has measured drugs of abuse in wastewater since 2019
 - SCORE's annual measurement
- More than 2500 samples have been analyzed so far
- Substances
 - Cannabis
 - Cocaine
 - Benzoylecgonine
 - Amphetamine
 - Methamphetamine
 - MDMA

- Ketamine
- Tramadol and Odm-tramadol
- 6-monoacetylmorphine (6-MAM)
- Cotinine
- 3-CMC

RI. SF

Cocaine

RI. SE

Graph showing the development of cocaine use in 7 different EU cities, 2011 – 2022 (Antwerp, Zagreb, Milan, Eindhoven, Utrecht, Castellon, Santiago). These cities were selected since they have annual data from several years. Data from EMCDDA.

Develop an analytical method

Substanse

Trenbolone
17α-Trenbolone
Boldenone
5β-Androst-1-en-17β-ol-3-on
Metenolone
1-Metylenandrosteron
Metandrostenolon (= Metandienon)
Epimetendiol
Testosterone
1α-Metylandrosterone
Drostanolone
2α-Metyl-5α-androstan-3α-ol-17-on
Oxandrolone
17-Epi-Oxandrolone
Stanozolol
3-Hydroxystanozolol
Nandrolone
19-Norandrosterone
Epitestosterone
Oxymesteron e
Androstendione
Androstanolone, DHT
Oxymetholone
4-Clorodehydromethyltestosterone (CDMT)
Mesterolone
Dehydroepiandrosteron (DHEA)
Androsta-1,4-dien-3,17-dion (ADD)

RISE Research Institutes of Sweden

Quantification off AAS in wastewater from three Swedish cities (7-day series)

Out of the 26 AAS included in the doping panel, 7 AAS were detected in all 21 investigated samples, with concentrations between 1 and 690 μ g/m3 (mass flow 0.4 – 290 mg/1000 inhabitants & 24h).

In addition, some of the AAS were detected sporadic.

Results from 3 cities in Sweden

19-norandrosteron (metabolit till nandrolon)

Results from 3 cities in Sweden

4.0

Substances in RISE panel (16)

Substans

19-Norandrosterone (Nandrolone metabolite)	Androstanolone (Dihydrotestosterone, DHT)
Trenbolone	Stanozolol
Androstendione	Oxymesterone
Boldenone	Oxymetholone
Testosterone	Chlorodehydromethyltestosterone (4-CDMT)
Oxandrolone	Boldione
Epitestosterone	3-Hydroxystanozolol (metabolite)
4-Dihydroboldenon (metabolite)	Mesterolone

Strictly synthetic AAS

Findings

- Trenbolone (24.2%)
- Stanozolol (4.8%)
 - 3'Hydroxystanozolol (1.6%)
- Oxandrolone (1.6%)
- Oxymetholone (8.1%)

- Strongly indicative of illicit activities
- All handling and use prohibited
- No known natural sources

Testosterone origin

• 29 samples had concentrations exceeding the expected, can be seen as an indicator of illicit use

SE

Testosterone- to-epitestosterone ratio

- T/E traditionally used for dopingcontrol of individuals
- T/E > 2.0 indicative of illicit use
- T/E can be affected by
 - AAS use (other than Testosterone)
 - High alcohol consumption
 - Masking agents
 - To increase Epitestosterone
 - Demographics

Wanted to evaluate if T/E could be applied to WBE to predict if illicit use has occurred in a population

T/E	n (%)	Indicates illicit use n (%)
< 1.5	27 (43)	0 (0)
> 1.5 < 2.0	14 (23)	8 (57)
> 2.0	21 (34)	21 (100)

Testosterone- to-epitestosterone ratio

CF.

Exemples of application

- Total use in a population
- Changes in consumption patterns over time following trends
- Evaluation of measures for prevention
- Upstream measurements: part of a city, sports facilities, gym
- Monitoring during police operations (eg Operation Hagelstorm)

Conclusion

- First known attempt of using WBE to estimate community AAS abuse
- Strong evidence of trenbolone, stanozolol, oxandrolone, and oxymetholone use
- Indicative of testosterone use
- No data on whether AAS were used by humans or directly disposed into sewer

×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	Ď	ič	×	. 1	×	@×	• ×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	<u>D</u> . ×	×	×	<u>a </u>	<u>y 50</u> ×	<u>~</u>	• <u> </u>	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	×	×	[Div	isi	on	of	B	ioe	cor	nom	y _a	nd	Hea	alt	h	×	×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	De	pår	-tm	eňt	ŏf	° č	hěm	niča	aľ	aňc	1 P	hắr	mào	ceu	tic	al	Τo	xìc	olo	oğy	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	

RISE – **Research Institutes of Sweden AB** · info@ri.se · ri.se